What is Artificial Neural Networks and its Types | Applications

What is Artificial Neural Networks:

Artificial Neural NetworkArtificial neural networks are the most powerful learning models. They have the versatility to approximate a wide range of complex tasks that represent multi-dimensional input-output maps. There is also an adaptation capability in the nervous network, and noise can also perform strongly in the environment.

An artificial neural network (ANN) is an information processing paradigm, which is inspired by the biological nervous system, such as the brain, process information. The main element of this paradigm is the novel structure of the information processing system. It is composed of a large number of highly interactive simple processing elements (neurons) working together to solve specific problems. ANN, like people, learn by example. An ANN is configured through a learning process for a specific application, such as pattern recognition or data classification. Learning in biological systems involves adjusting the synaptic connection between neurons.

Neural Networks:

A neural network is a computing system based on the biological nervous network that creates the human brain. Neural networks are not based on a particular computer program written for it, but it can improve and improve its performance over time.
A neural network is made up of the collection of units or nodes called neurons. These neurons are connected to each other by a connection called synapses. Through synapses, a neuron can pass the signal or information to another neuron pass. The received neuron can receive the signal, can process it and give the next signal. The process continues until the output signal is produced.

Applications of Neural Networks:

1. Computer Vision: Since the computer cannot be written to identify all the objects present in existence, its only way is to use the nerve network, as time passes, computers recognize the bases of their own new things Which can be learned first.

2. Pattern Recognition/Matching: It can be applied to find the stores of images to say, to say a face with a known face. Used in criminal investigations.

3. Natural language processing: A system that allows the computer to recognize human language spoken by progressively learning and listening over time.

Types of Artificial Neural Networks: 

1. Feedforward Neural Networks:
The feed world neural network, often called multilayer perceptron (MLP) (also called Deep FeedFavor) was the first and simplest type of neural network artificial neural network.

types of artificial neural network
A. The simplest type of feedforward neural network is the perceptron (no hidden layers).
B. Infeed forms, neural network connections do not create a cycle between the nodes.
C. Feedforward neural network flow of information in input from input to only one direction.

2. A Recurrent Neural Network (RNN) is a part of artificial neural networks where the relationship between the nodes creates a guided graph with a sequence. It allows displaying temporary dynamic behavior for a time sequence. RNN is designed to recognize the sequential characteristics of a data and to use the pattern to predict the next potential scenario.

3. Deep Feed Forward Neural Networks (DFF): The long-term short-term memory (LSTM) network is an extension for recurrent neural networks, which basically extends their memory. A common LSTM unit is composed of one cell, one input gate, one output gate, and one forgotten gate.

4. Recurrent Neural Networks (RNN):
GRNN to D.F. Specht in 1991, this is a variation for the radial base neural network. Similar to the back-propagation neural network, normal regression neural network (GRNN) is also a good tool for function approximation in the modeling toolbox.

5. General Regression Neural Network (GRNN):
Sensory neural networks (CNN) are similar to normal neural networks, which are usually applied to analyze visual imagery. CNN is known for its ability to recognize the patterns present in the images.

Related Articles :

Leave a Reply

Your email address will not be published. Required fields are marked *