Soft Computing Tutorial: Application, Examples, Techniques, and Advantages!

Soft Computing Tutorial: Application, Examples, Techniques, and Advantages!

In this article, we are going to cover all possible stuffs about what is Soft Computing and its application, examples, techniques; with involving advantages of soft computing with ease. Make ensure that at the end of this post, you will definitely fully aware about what is soft computing without any hassle.

What is Soft Computing?

Soft Computing is an emerging approach to computing that gives the remarkable ability of the human mind to argue and learn in the atmosphere of uncertainty and distrust.

soft-computing

Soft Computing is based on some biological induced methods such as genetics, development, and behavior, the warm of particles, the human nervous system, etc. The journal of Soft Computing has more demand in the International market because this computing work on the real time application areas such as Fuzzy Logic, Expert System, Computational computing, and Artificial Neural network System.

Soft Computing Tutorial Headlines:

In this section, we will show you all headlines about this entire article; you can check them as your choice; below shown all:

  1. What is Soft Computing?
  2. Need of Soft Computing
  3. Importance of Soft Computing
  4. Application of Soft computing
  5. Advantages of Soft Computing
  6. Principles of Soft Computing
  7. Soft Computing vs Hard Computing
  8. Applied Soft Computing
  9. Soft Computing Techniques​
  10. FAQs (Frequently Asked Questions)
  • What is meant by soft computing?
  • Why do we need soft computing?
  • Who invented soft computing?
  • What is soft computing in AI?
  • What is the scope of soft computing?
  • What are the different application areas of soft computing in real life?
  • Where soft computing is used in real time?
  • What are real life examples of soft computing?
  • What are different types of soft computing techniques?
  • What are characteristics of soft computing?
  • What are the main advantages of soft computing?

Let’s Start!!

Need of Soft Computing

Now Soft Computing is the only solution when we do not have any mathematical modeling of problem-solving (i.e., algorithm), in real-time, there is a need to solve a complex problem, adapt with the changed scenario and be implemented with parallel computing. It has massive applications in many application zones such as medical diagnosis, computer vision, machine intelligence, weather forecasting, network optimization, LSI design, pattern recognition, handwritten character improvement etc.

Importance of Soft Computing

The supplementation of FL, NC, GC, and PR is an important result: In many cases, any problem can be solved most effectively by using FL, NC, GC and PR rather than specially in combination. A great example of a particularly effective combination is known as “Neurofjie System”. Such systems are increasingly seen as a consumer product ranging from air conditioners and washing machines to photocopiers and camcorders. There are less visible but perhaps even more important Neurofjie systems in industrial applications. It is especially important that in both consumer products and industrial systems, the use of soft computing technologies leads to systems that have high MIQ (Machine Intelligence Quota). 

Application of Soft computing

There are various Applications of Soft Computing are:

  • Consumer appliance like AC, Refrigerator, Heaters, Washing machine.Robotic works in the form of Emotional Pet robots.
  • Food preparation devices are Microwave and Rice cookers.
  • For amusing gaming playing product like Checker and Poker etc.
  • Recognition for Handwriting.
  • Data compression/Image Processing
  • For Architecture
  • System to Decision-support
  • Polymer Processing
  • Architectures Engineering
  • Applied Mathematics Engineering
  • Intelligent Instrumentation
  • Turning for Cutting Tools

Some stunning Application areas of Soft Computing are:

  • Actuarial Science
  • Agricultural Production Engineering
  • Medicine and Biology Application
  • Construction and Design Engineering
  • Computer Engineering
  • Sin Forecasting
  • Computational Process
  • Natural Environmental Engineering
  • Fault-Tolerance
  • Machine Learning
  • Signal processing
  • Mechanical engineering
  • Materials Engineering
  • Disease diagnosis
  • Nano Technology
  • Pattern Recognition

Advantages of Soft Computing

These are many Advantages of Soft Computing  are:

  • Work as human being reasoning
  • Nearest human thinking
  • Biological inspiration
  • Tolerance to imprecision
  • Can be captured uncertainty and vagueness values
  • Perceive Linguistic Variables
  • Work in equations and conditions

Such as  <if animal = cow>

Then take milk

Principles of Soft Computing

Principles Of Soft Computing accepts many topics such as Defuzzification, Special Networks, Membership Functions, and Supervised Learning Network.

Defuzzification

Diffusion is the systemically model of creating a quantitative output in fuzzy logic, looking at fuzzy logic, fuzzy sets and related membership degrees. Mostly it required in the fuzzy control system. In order to change the fuzzy set description as a result of an action in a specific value for a control variable, some process of diffusion is required.

Many methods are:

  • Center of area.
  • Center of gravity
  • Extended center of area.
  • Extended quality method.
  • Fuzzy clustering defuzzification.
  • Fuzzy mean.
  • First of maximum.

Supervised Learning Network

Supervised Learning concept related to artificial intelligence and Machine learning, in which you have provided both value like as input and output. In which when we set the new input in M = f(N) equation (N is input and M is output).

If output value is exist in category, then classification trouble will be yield such as “One” or “Two”.

If real data is presented in output variable, then Regression problems will be produced.

Special Networks

  • Boltzmann network
  • Cascade correlation net
  • Probabilistic neural net
  • Cauchy and Gaussian net
  • Cognitron and neocognitron nets
  • Spatia-temporal network
  • Optical neural net
  • Simulated annealing network
  • Cellular neural network
  • Logicon neural network

Membership Functions

If we define Membership function then it is fuzziness in fuzzy set different element in the set, these can be discrete or continuous. Membership functions are represented as pictorial form.

Soft Computing vs Hard Computing

  • Soft Computing is advance to Hard Computing.
  • Soft Computing work on Fuzzy logic and Genetic Algorithms.
  • Soft Computing not required the any program, it includes in own program.
  • Soft computing performs in  Parallel Computation.
  • Soft Computing produces the approximate output.
  • Hard Computing depends on Conventional Computing.
  • Hard Computing works on the binary system and cris software.
  • Hard Computing need a well written programs.
  • Hard Computing work in Sequential Computation.
  • Hard Computing result produces in precise values.

Applied Soft Computing

Applied Soft Computing is an part of international magazine that promotes the integrated approach of soft computing to fix current life troubles. A compilation of Soft Computing functionality aimed at exploiting impurity, uncertainty and tolerance for partial truths to achieve tractability, robustness and reduced solution costs. The primary aim of the Applied Soft Computing is to publish the excellent quality research in different applications areas of the Fuzzy Logic, Neural Networks, Evolutionary Computing, and Genetic algorithms.

Soft Computing Techniques​

There are three types of techniques, which are used in soft computing; below explain each one:

Artificial Neural Networks in Soft Computing

Human brains in a way describe the real world conditions, which computers cannot. In order to solve this issue, for the first time, neural networks were developed in the 1950s. An artificial neural network is an attempt to emulate a network of neurons that make a human brain so that computers can be able to learn things and make decisions in a human way. ANN is made by regular computer programming as if they are mutually associated with brain cells.

Fuzzy Logic in Soft Computing

Fuzzy logic is a mathematical logic, which attempts to solve problems with an open, imprecise spectrum of data that makes it possible to get an array of precise findings. Fuzzy logic is designed to be considered the best possible decision by considering all available information and looking an input.

Genetic Algorithm in Soft Computing

Nature is and will always be an amazing source of inspiration for all of mankind. Genetic algorithms (GA) take all their inspiration from nature, and there are no less genetic algorithms based on search-based algorithms that find its roots in natural selection and concepts of genetics. The genetic algorithm is also a subset of a large branch of computation (also called evolutionary computation).

FAQs (Frequently Asked Questions)

What is meant by soft computing?

Soft computing is an emerging approach to computing that gives the remarkable ability of the human mind to argue and learn in the atmosphere of uncertainty and distrust.

Why do we need soft computing?

In the area of Big Data, soft computing plays the major role for getting to analysing the problem at the base of algorithm and performs for precise results.

Who invented soft computing?

Soft computing is invented by L.A. Zadeh in the early 90’s.

What is soft computing in AI?

Soft computing is going to use in to engineering areas such as mining, automotive, and so on. Main goal of AI is to make machines intelligent. Soft computing gets to deal along with imprecision and probabilities, therefore AI require the appropriate data to analyze.

What is the scope of soft computing?

Soft computing offers the rapid dissemination of important output in the soft computing foundation, applications, and methodologies. So, it is going to encourage the integration of soft computing theoretical and practical output into both advanced and real life applications.

What are the different application areas of soft computing in real life?

Above in this article, we already have explained several application areas of soft computing in daily life; you can check them.

Where soft computing is used in real time?

Data mining, optimization, fault diagnosis, pattern recognition, signal processing, pattern recognition, signal processing, and so on.

What are real life examples of soft computing?

Home Appliances: Refrigerators, microwaves, washing machines, etc.

What are different types of soft computing techniques?

There are main techniques, which are used into soft computing like as evolutionary computing, artificial neural networks, and fuzzy logic and Bayesian statistics.

What are characteristics of soft computing?

There are many characteristics of soft computing such as:

  • Work as human being reasoning
  • Nearest human thinking
  • Biological inspiration
  • Tolerance to imprecision

What are the main advantages of soft computing?

Through this post, we already have been shown many advantages of soft computing; you can read them.

Conclusion of Soft Computing

In this article, you have been completely educated about what is Soft Computing and its application, examples, techniques; with involving the advantages of soft computing without getting any hassle. If this article is useful for you, then please share it along with your friends, family members or relatives over social media platforms like as Facebook, Instagram, Linked In, Twitter, and more.

If you have any experience, tips, tricks, or query regarding this issue? You can drop a comment!

Happy Learning!!

Related Articles

Leave a Reply

Your email address will not be published.